Nonlinear Controller Design of Three Degree-of-Freedom Hybrid Magnetic Levitation Control Based on Fuzzy Model for a Contactless Servo-Actuator

نویسندگان

  • Takafumi KOSEKI
  • Kadir ERKAN
چکیده

This paper presents a nonlinear servo-control design based on Fuzzy model for safer and comfortable levitation of an electromagnetic suspension stage consisting of triple arrangement of hybrid electromagnets, since conventional linear control design can give satisfactory results only around a specified linearization point for tiny displacements. The authors have proposed compensation principle for a proper control action according to change of operational points through fuzzy inference algorithm. Fuzzy reasoning acts as a gain scheduler among approximate local linear controllers derived from various gap operating points. The authors integrate a zero-order disturbance observer for estimating gap velocity and winding currents, as well as for improving performance of the system under external load-force changes. The effectiveness of the proposed control methodology is verified through several experiments. Keywords— fuzzy model-based control, hybrid electromagnet, servo control, magnetic levitation, magnetic suspension

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of Discrete Time Observer Based Backstepping Controller for a 2DOF Servomechanism

The two degrees of freedom servomechanism has many applications, including in gimbaled seekers. These mechanisms require closed-loop control to perform properly. In this paper, an observer-based multi-input-multi-output hybrid controller is designed for a two-degree-of-freedom servomechanism. Since in the model presented in this paper, disturbances on the mechanism are considered, so an extende...

متن کامل

Implementation of High Precision Positioning Systems Using Contactless Magnetic Levitation

Implementation of High Precision Positioning Systems Using Contactless Magnetic Levitation Robert Brydon Owen Masters of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto 2005 This thesis presents the implementation and control of two high precision positioning systems based on contactless magnetic levitation, actuated by means of permanent magnet ...

متن کامل

Design Servo System Type and Positioning of Pole Observer Full Rank a Piezoelectric Servo Valve without Integrator

In this paper, the method of modern control approach for the design of controller and observer is used. Other functions such as neural controllers - or fuzzy sliding mode control can be found in this work and the results are compared. First, a dynamic model of the servo valve is intended for the governing equations in state-space form expression are obtained. Due to the system integrator is exp...

متن کامل

Fuzzy PD Cascade Controller Design for Ball and Beam System Based on an Improved ARO Technique

The ball and beam system is one of the most popular laboratory setups for control education. In this paper, we design a fuzzy PD cascade controller for a ball and beam system using Asexual Reproduction Optimization (ARO) technique. The ball & beam system consists of a servo motor, a grooved beam, and a rolling ball. This system utilizes a servo motor to control ball’s position on the beam. Chan...

متن کامل

Fuzzy Control of a Magnetic Levitation System for a Linear Drive and Comparison with a State Control

In this paper a fuzzy levitation controller for a one degree of freedom maglev application is designed and its performance is compared with the performance of a state controller. The comparison is based on both simulation and measurement results. The maglev application is a levitation/propulsion head of an autonomous transportation vehicle with a nominal air gap value of 2.5 mm. First a nonline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006